Immunization with mutant HPV16 E7 protein inhibits the growth of TC-1 cells in tumor-bearing mice

نویسندگان

  • YAN-LI LI
  • ZHONG-LIANG MA
  • YUE ZHAO
  • JING ZHANG
چکیده

Two human papillomavirus (HPV) 16 oncogenic proteins, E6 and E7, are co-expressed in the majority of HPV16-induced cervical cancer cells. Thus, the E6 and E7 proteins are good targets for developing therapeutic vaccines for cervical cancer. In the present study, immunization with the mutant non-transforming HPV16 E7 (mE7) protein was demonstrated to inhibit the growth of TC-1 cells in the TC-1 mouse model. The HPV16 mE7 gene was amplified by splicing overlap extension polymerase chain reaction using pET-28a(+)-E7 as a template, and the gene was cloned into pET-28a(+) to form pET-28a(+)-mE7. Compared with the E7 protein, mE7 lacks amino acid residues 94-98, and at residue 24, there is a Cys to Gly substitution. pET-28a(+)-mE7 was then introduced into Escherichia coli Rosetta. The expression of mE7 was induced by isopropyl β-D-1-thiogalactopyranoside. The mE7 protein was purified using Ni-NTA agarose and detected by SDS-PAGE and western blot analysis. In the tumor prevention model, no tumor was detected in the mice vaccinated with the mE7 protein. After 40 days, the tumor-free mice and control mice were challenged with 2×105 TC-1 cells. All control mice developed tumors six days later, but mE7 immunized mice were tumor free until 90 days. In the tumor therapy model, the TC-1 cells were initially injected subcutaneously, and the mice were subsequently vaccinated. Vaccination against the mE7 protein may significantly inhibit TC-1 cell growth compared to the control. These results demonstrated that immunization with the HPV16 mE7 protein elicited a long-term protective immunity against TC-1 tumor growth and generated a significant inhibition of TC-1 growth in a TC-1 mouse model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vaccination of full-length HPV16 E6 or E7 protein inhibits the growth of HPV16 associated tumors.

Cervical cancer is the second most common cancer in women worldwide. Human papillomavirus (HPV) is the primary etiologic agent of cervical cancer. Two HPV16 proteins, E6 and E7, are consistently expressed in tumor cells. Most therapeutic vaccines target one or both of these proteins. Taking the advantages of safety and no human leukocyte antigen restriction, protein vaccine has become the most ...

متن کامل

Prevention and Inhibition of TC-1 Cell Growth in Tumor Bearing Mice by HPV16 E7 Protein in Fusion with Shiga Toxin B-Subunit from shigella dysenteriae

OBJECTIVE For immunotherapy of human papillomavirus (HPV) -16-associated cervical cancers the E7 protein is considered a prime candidate. However it is a poor inducer of cytotoxic T-cell response, when being used as a singular antigen in protein vaccination. Hence, in this study we focused on the utilization of a vaccine delivery system for prevention or treatment of cervical cancer. MATERIAL...

متن کامل

بررسی پاسخ تکثیری لنفوسیت‌های طحالی حاصل از تزریق پلاسمید کد کننده E7-HPV16 در مدل موش توموری پاپیلوماویروس

Background & Objective: Human papillomavirus (HPV) oncoproteins, including E6 and E7 are constitutively expressed in cervical cancer cells. These proteins are ideal targets to be used for developing therapeutic vaccines against existing HPV-associated carcinomas. The aim of this study was to measure the proliferation response rate of splenic lymphocytes derived from E7-HPV16 encoding plasmid in...

متن کامل

Preparation and in vivo anti-tumor evaluation of human papillomavirus E7 adjuvanted with Montanide ISA 266 as a vaccine candidate

Introduction: Human papillomavirus (HPV) 16 E7 protein is expressed constitutively by HPV-infected tumor cells. Mutant versions of E7 are considered as safer candidates for immunotherapy of cervical cancer.  Different strategies including formulation with adjuvants are used to induce a potent immune response against antigenic proteins. Methods: In this experimental study, we used Escherichia co...

متن کامل

DNA-Based Vaccine Is More Efficient than Non-Pathogenic Live Vaccine for the Prevention of HPV16 E7-Overexpressing Cancers

  Introduction: Vaccinology provides promising approaches for the control of various infectious diseases. Among different strategies, DNA vaccines offer attractive research opportunities for development of vaccines for induction of antigen-specific immunity owing to their stability, simplicity of delivery, safety and cost effectiveness. However, there is a need to increase their potency by the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015